Assimilating MODIS aerosol optical depth using WRF/Chem and GSI: Application to a Chinese dust storm
نویسندگان
چکیده
Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to independent AOD observations from the AErosol RObotic NETwork (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.
منابع مشابه
Implementation of aerosol assimilation in Gridpoint Statistical Interpolation
Gridpoint Statistical Interpolation (GSI) is an assimilation tool that is used at the National Centers for Environmental Prediction (NCEP) in operational weather forecasting in the USA. In this article, we describe implementation of an extension to the GSI for assimilating surface measurements of PM2.5, PM10, and MODIS aerosol optical depth at 550 nm with WRF-Chem (Weather Research and Forecast...
متن کاملWRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget
The impact of a typical pre-monsoon season (April–June) dust storm event on the regional aerosol optical properties and radiation budget in northern India is analyzed. The dust storm event lasted from 17 to 22 April 2010 and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) estimated total dust emissions of 7.5 Tg over the model domain. Both in situ (AERONET – Aerosol...
متن کاملAerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts
An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from ...
متن کاملInvestigating the relationship between ground-level particulate matter and aerosol optical depth during dust storm episodes: a case study of Tehran
Background and Objective: During the last few years, air pollution and increasing levels of particulate matters (PMs) have become major public health issues in the megacity of Tehran. The high cost of constructing and maintaining air pollution monitoring stations has made it difficult to achieve adequate spatial-temporal coverage of PM data over various regions. In this regard, the use of remot...
متن کاملNumerical and Synoptic Study of Emission, Transport and Identify Potential Sources of a Severe Dust Storm Over Middle East
One of the powerful tools in dust storms analysis that have recently found extensive application is atmospheric-chemistry numerical modeling. Spatial and temporal distribution of Middle Eastern dust for a severe dust event during 4-8 July 2009 was analyzed by Weather Research and Forecasting with Chemistry (WRF/Chem) model simulations and remote sensing observations. The HYSPLIT model is applie...
متن کامل